The Energy Transition: Opportunities and Challenges

EnergyMusings.substack.com

Allen Brooks Rice Global Forum April 6, 2023

Energy Transition Definition

Energy transition: change in the composition (structure) of primary energy supply

Vaclav Smil, 2010, Energy Transitions – History, Requirements, Prospects

Energy transition: global energy sector's shift from fossil-based systems of energy production and consumption — including oil, natural gas and coal — to renewable energy sources like wind and solar, as well as lithiumion batteries

S&P Global, 2020

Energy Transition History

1830 – 1950 biofuel (wood) to coal

1950 - 1980 coal to oil

1980 – 2020 oil to natural gas

2020 – 2050 gas to renewables

Energy Transition Realities

Transitions Require Decades

Transitions Driven By Fuel Quality And Market Prices

Fuel Physical Realities Are Key Considerations

Wishing And Hoping Is Not A Strategy

Global primary energy consumption by source

Primary energy is calculated based on the 'substitution method' which takes account of the inefficiencies in fossil fuel production by converting non-fossil energy into the energy inputs required if they had the same conversion losses as fossil fuels.

Source: Our World in Data based on Vaclav Smil (2017) and BP Statistical Review of World Energy

OurWorldInData.org/energy • CC BY

Climate Change Is Driving Transition

Evolution of Climate Change Outrage

World Would Not Be Able To Feed A Growing Population

Thomas Malthus

English economist and demographer

AN ESSAY ON THE PRINCIPLE OF POPULATION; OR, A VIEW OF ITS PAST AND PRESENT EFFECTS ON HUMAN HAPPINESS; WITH AN INQUIRY INTO OUR PROSPECTS RESPECTING THE FUTURE REMOVAL OR MITIGATION OF THE EVILS WHICH IT OCCASIONS. By T. R. MALTHUS, A. M. LATE FELLOW OF JESUS COLLEGE, CAMBRIDGE. IN TWO VOLUMES. VOL. I. THE THIRD EDITION. LONDON: FRINTED FOR J. JOHNSON, IN ST. PAUL'S CHURCH-YARD. BY T. BENSLEY, BOLT COURT, FLEET STREET. 1806.

Environmental Movement Begins

Poisoning The Planet Had To Stop

Rachel Carson

Climate Activism: Analysis To Fear To Alarmism

1960s THE LIMITS TO Danielie H. Mendums Despis L. Mainhows Aproxi Associate William W. Bellyons St. A Report for THE CLUB OF BOME'S Project on the Preideamers of Musical A POTOMAC ASSOCIATES BOOK 82.75

MIT/Meadows

Paul Ehrlich

2000s

Al Gore

Meet Greta Thunberg and Climate Doomism

"How dare you! You have stolen my dreams and my childhood with your empty words." - UN Sept. 24, 2019

EnergyMusings.substack.com

Fossil Fuels Create Carbon Emissions That Harm The Planet's Climate

Reduced Poverty

Fossil Fuels Have Improved Quality of Life, Lengthened Live Spans,

Fossil Fuels: Good vs. Bad

Our World

Source: Our World in Data based on Vaclav Smil (2017) and BP Statistical Review of World Energy OurWorldInData.org/fossil-fuels/ • CC BY

Climate Activism Kicked Off With Michael Mann's Hockey Stick CO2 Chart in 1998

Our Sinking Planet?

Two 2018 studies show the opposite. One of Tuvalu showed total land area increased nearly 3% between 1971 and 2014.

Second study showed nearly 90% of Pacific and Indian Ocean low-lying islands remained stable or increased over the decades.

What The IPCC Is Getting Wrong

Policymaker Summaries Often Ignore The Science That Challenges The Narrative

What The IPCC Gets Wrong With Alarmism

Economic impacts attributable to climate change are increasingly affecting peoples' livelihoods and are causing economic and societal impacts across national boundaries.

Study (ordered by date	Phenomenon	Detection claimed	Trend	Attribution claimed	Period (italics =<30						
of publication)	(region)	to be achieved?	direction	to be achieved?	years)						
Studies focused on spe	cific phenomena										
Martinez (2020)	Tropical cyclones	No	0/2	No	1000.2019						
Grinsted et al. (2019)	United States	Yes	Increase	Yes	1900-2018						
Chen et al. (2018)	China	No	n/a	No	1983-2015						
Ye and Fang (2018)	China	Yes	Decrease	No	1985-2010						
Weinkle et al. (2018)	United States	No	n/a	No	1900-2017						
Klotzbach et al. (2018)	United States	No	n/a	No	1900-2016						
Fischer et al. (2015)	China	No	n/a	No	1984-2013						
Estrada et al. (2015)	United States	Yes	Increase	No	1900-2005						
Botzen (2011)	United States	NO	n/a	NO	1900-2005						
Nordhaus (2010)	United States	Yes	Increase	No	1900-2005	Table 1. Continued					
Zhang et al. (2009)	China	No	n/a	No	1983-2006	Tuble 1. Continued.					
Schmidt et al. (2009)	United States	No	n/a	No	1950-2005						Period
Pielke et al. (2008)	United States	No	n/a	No	1900-2005	Study (ordered by date	Phenomenon	Detection claimed	Trend	Attribution claimed	(italics =<
Pielke et al. (2003)	Latin America and	No	n/a	No	1944-1999	of publication)	(region)	to be achieved?	direction	to be achieved?	years)
	Caribbean					Reves and Elias (2019)	United States (crop	Yes	Mixed	No	2001-2016
Raghavan and Rajesh	India	No	n/a	No	1977-1998	,	loss)				
(2003)	Haland Caston	Ma	- 1-	A1-	1000 1000	McAneney et al. (2019)	Australia (weather)	No	n/a	No	1966-2017
(2001)	United States	NO	n/a	NO	1900-1999	Paul and Sharif (2018)	Texas (hydro-	No	n/a	No	1960-2016
Pielke and Landsea	United States	No	n/a	No	1976-1995		meteorological)				
(1998)	onned states	110	100	140	1920-1999	Bahinipati and	India (weather)	No	n/a	No	1972-2009
(1994)	Floods					Venktachalam (2016)					
Du et al. (2019)	China	Yes	Decrease	No	1990-2017	Zhou et al. (2013)	China (natural	No	n/a	No	1990-2011
Paprotny et al. (2018)	Europe	No	n/a	No	1870-2016		disasters)				
Wei et al. (2018)	China	Yes	Decrease	No	2000-2015	Crompton and	Australia (weather)	No	n/a	No	1967-2006
Fang et al. (2018)	China (Yangtze River)	Yes	Decrease	No	1998-2014	McAneney (2008)					
Perez-Morales et al.	Spain	No	n/a	No	1975-2013	Choi and Fisher (2003)	United States	No	n/a	No	1951-1997
(2018) Stevens et al. (2016)	United Kingdom	No	n/a	No	1884-2013		(weather)				
Barredo et al. (2010)	Spain	No	n/a	No	1971-2008		World				
Hilker et al. (2009)	Switzerland	No	n/a	No	1972-2007	Pielke (2019)	All disasters &	Yes	Decrease	No	1990-2017
Chang et al. (2009)	Korea	No	Increase	No	1971-2005		weather only				
Barredo (2009)	Europe	No	n/a	No	1970-2006	Watts et al. (2019)	All disasters	No	n/a	No	1990-2016
Downton et al. (2005)	United States	Yes	Decrease	No	1926-2000	Daniell et al. (2018)	Multi-hazard	Yes	Decrease	No	1950-2015
Fengqing et al. (2005)	China	No	n/a	No	1950-2001	Mohleji and Pielke	All-weather related	No	n/a	No	1980-2008
Pielke and Downton	United States	No	n/a	No	1932-1997	(2014)					
(2000)	E-deptoral and adverses					Neumayer and Barthel	All-weather related	No	n/a	No	1980-2008
Andres and Radour	Extratropical storms	Ma	n/n	No	1072 2016	(2011)					
(2010)	Switzenanu	NO	11/d	NO	1972-2010	Visser et al. (2014)	All-weather related	No	n/a	No	1980-2010
Stucki et al (2014)	Switzerland	No	n/a	No	1859-2011	Miller et al. (2008)	All-weather related	No	n/a	No	1950-2005
Barredo (2010)	Europe	No	n/a	No	1970-2008						
	Tornadoes										
Simmons et al. (2013)	United States	No	n/a	No	1950-2011						
Brooks and Doswell	United States	No	n/a	No	1890-1999						
(2001)											
Boruff et al. (2003)	United States	No	n/a	No	1900-2000						
Condex at al (2012)	Convective storms	Var	Increase	No	1070 2000						
Sander et al. (2013)	Wildfire	res	Increase	NO	1970-2009						
Crompton et al. (2010)	Australia	No	n/a	No	1925-2009						
Studies focused on part	icular regions										
Study	Region (location &	Detection claimed	Trend	Attribution claimed	Period						
	phenomena)	to be achieved?	direction	to be achieved							
	Region										
Choi et al. (2019)	Korea (weather)	Yes	Decrease	No	1965-2015						
-					(Continued)						

Roger Pielke Explains IPCC Climate Research Gamesmanship

Want to show an increase? Start your analysis in 1980 Want to show no trends? Start your analysis in 1950 Want to show a decrease? Start your analysis in 2002

The Energy Transition

Opportunities:

- Electrify everything
- More renewables & subsidies
- New fuels
 - Biofuels
 - Hydrogen
 - Fusion

<u>Challenges:</u>

- Energy density
- Hard to decarbonize sectors
 - Heavy duty trucks
 - Air transportation
 - Marine transportation
 - Cement and steel
- Magnitude of metals needed
- Additional infrastructure
- Cost

World Electricity Mix in 2021 and 2050

Every Forecast Has Global Electricity Use Much Higher

Notes: 2050 scenarios arranged in declining order of fossil fuel electricity generation. "Other" includes oil, geothermal, and marine. For BNEF it also includes hydro.

Renewables Capacity Not Comparable To Fossil Fuels

Table 1b. Estimated unweighted levelized cost of electricity (LCOE) and levelized cost of storage (LCOS) for new resources entering service in 2027 (2021 dollars per megawatthour)

Plant type	Capacity factor (percent)	Levelized capital cost	Levelized fixed O&Mª	Levelized variable cost	Levelized transmis- sion cost	Total system LCOE or LCOS	Levelized tax credit ^b	Total LCOE or LCOS including tax credit
Dispatchable technologies								
Ultra-supercritical coal	85%	\$52.11	\$5.71	\$23.67	\$1.12	\$82.61	NA	\$82.61
Combined cycle	87%	\$9.36	\$1.68	\$27.77	\$1.14	\$39.94	NA	\$39.94
Advanced nuclear	90%	\$60.71	\$16.15	\$10.30	\$1.08	\$88.24	-\$6.52	\$81.71
Geothermal	90%	\$22.04	\$15.18	\$1.21	\$1.40	\$39.82	-\$2.20	\$37.62
Biomass	83%	\$40.80	\$18.10	\$30.07	\$1.19	\$90.17	NA	\$90.17
Resource-constrained techr	ologies							
Wind, onshore	41%	\$29.90	\$7.70	\$0.00	\$2.63	\$40.23	NA	\$40.23
Wind, offshore	44%	\$103.77	\$30.17	\$0.00	\$2.57	\$136.51	-\$31.13	\$105.38
Solar, standalone ^c	29%	\$26.60	\$6.38	\$0.00	\$3.52	\$36.49	-\$2.66	\$33.83
Solar, hybrid ^{c,d}	28%	\$34.98	\$13.92	\$0.00	\$3.63	\$52.53	-\$3.50	\$49.03
Hydroelectric ^d	54%	\$46.58	\$11.48	\$4.13	\$2.08	\$64.27	NA	\$64.27
Capacity resource technolog	gies							
Combustion turbine	10%	\$53.78	\$8.37	\$45.83	\$9.89	\$117.86	NA	\$117.86
Battery storage	10%	\$64.03	\$29.64	\$24.83	\$10.05	\$128.55	NA	\$128.55

Source: U.S. Energy Information Administration, Annual Energy Outlook 2022

80s-

90s%

20s-

40s%

Block Island Wind Output Still Disappoints

Electricity When Needed Is Often Not There Or There Is Too Much So Wasted

Energy Density of Power Sources

Renewable Land Use For Power Is Ignored By The Proponents

"37,000 square miles for wind farms and 4,700 square miles for solar PV" = the State of Tennessee

Iron Law of Power Density: The Lower The Power Density, The Greater The Resource Intensity

Green Power Will Need 2.2 Times The Capacity Of Existing Power Generation From Fossil Fuel

Electrify Everything = More Power Lines

DOE Says We Will Need 60% More Transmission Capacity By 2030

<u>At Current Build Rate:</u> +60% will need 84 years +100% will need 140 years

+200% will need 282 years

Renewables: Equipment Shortages and Higher Costs

California Experiment In Net Zero By 2030 Is Costing Citizens \$s And Blackouts

Percentage Change In California's All-Sector Electricity Prices, 2008 to 2022

Role of Critical Minerals in Clean Energy Transitions

Transportation And Power Generation Need Multiples Of Raw Materials

Minerals used in selected clean energy technologies

Hidden Problem With Critical Materials

Declining Ore Grades Pose Significant Problem For Green Energy Transition

Figure 16. Grade of mined minerals has been decreasing (Source: Mudd 2009- updated 2012, Analyst- Gavin Mudd)

Changing Auto Market Impacts Energy

270 Million Vehicles In U.S. Fleet Means Slow Change To EVs

Light-duty vehicle fuel economy and electric vehicle market share increase through 2050 due to rising CAFE Standards and other incentives

year across the AEO2023 Reference case and side cases.

Volvo ICE and EV Models Compared On Emissions

Clean EV Starts With 70% More CO2 Emissions Than Same ICE Model

* Volvo Cars manufacturing includes both factories as well as inbound and outbound logistics.

Figure i. Carbon footprint for C40 Recharge and XC40 Recharge, with different electricity mixes. Results are shown in tonnes CO₂-equivalents per functional unit (200,000km total distance, rounded values).

EVs

ICEs

Figure ii. Carbon footprint for C40 Recharge and XC40 ICE, with different electricity mixes. Results are shown in tonnes CO₂-equivalents per functional unit (200,000km total distance, rounded values).

Volvo's Carbon Footprint and When EV and ICE Breakeven

km Needed To Breakeven On CO2: Cleanest - 49k, Europe Grid - 77k, And Global Grid - 110k

Figure iii. Break-even diagram: Total amount of GHG emissions, depending on total kilometres driven, from XC40 ICE (dashed line) and C40 Recharge (with different electricity mixes in the use phase). Where the lines cross, break-even between the two vehicles occurs. All life cycle phases except use phase are summarized and set as the starting point for each line at zero distance.

Is Fusion Energy The Hope For The Future?

400 MJ of Power Needed For 3 MJ of Energy

A nuclear fusion reaction

In a fusion reaction, the repulsive electrostatic forces keeping the nuclei of light atoms apart are overcome and they fuse together to form helium. This requires extraordinarily high pressures and temperatures.

tritium are used because they fuse at relatively lower temperatures and release a lot of energy. Deuterium is found in seawater, while tritium can be extracted from lithium

than the original nuclei ...

Sources: IAEA; US Department of Energy; FT research © FT

Conclusions:

Energy Transition Is More Complex Than Policymakers Understand

Energy Transition Will Take More Time Than Expected

Energy Transition Will Cost Much More Than Predicted

Mandated Deadlines Will Be Pushed Back Or Abandoned

